

Matinée d'information sur les FDES

Impact environnemental du processus de production des matériaux

en collaboration avec Fréderic ROSSI et Luc FLOISSAC

Aix-en-Provence – vendredi 30 juin 2017

ACV de produits bois

Retour d'expérience de l'interprofession LEGNU VIVU en Corse

Objectif

« Quantifier précisément les gains en énergie grise et en émissions de GES obtenus par le recours massif aux matériaux biosourcés et par leur provenance locale par rapport à des solutions constructives conventionnelles, que ce soit pour la construction ou pour l'exploitation de bâtiments ayant des performances énergétiques comparables »

Phases

- Phase 1 Analyse de Cycle de Vie de la filière forêt-bois de Corse
- − Phase 2 Analyse de bâtiments biosourcés existants ou en projet
- Phase 3 Élaboration d'un référentiel

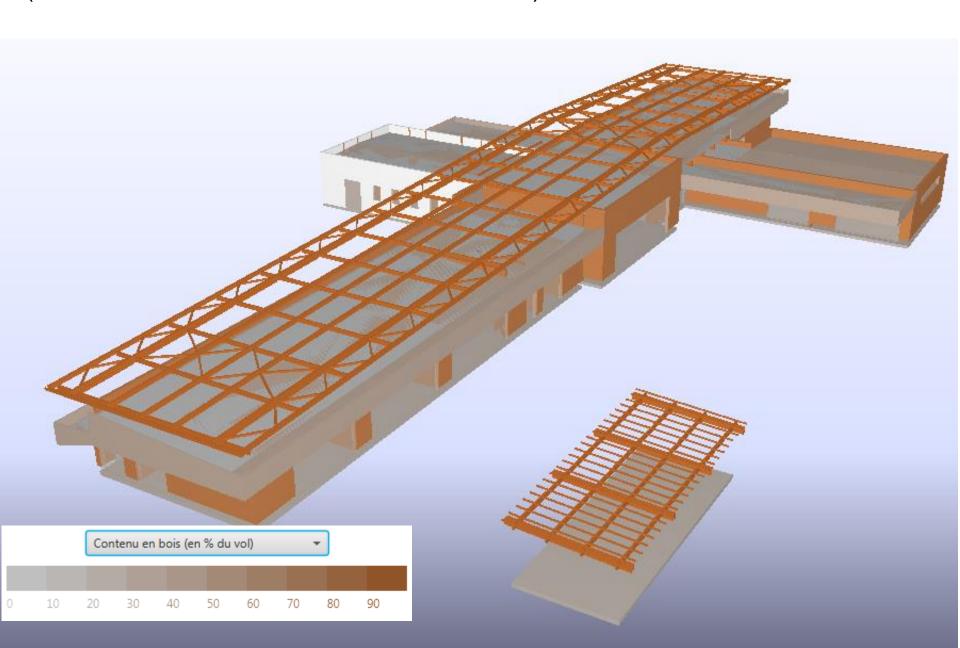
Financement

Réalisation

ACV et bilan environnemental de bâtiments biosourcés de Corse

- 3 bâtiments étudiés aux typologies différentes :
 - Groupe scolaire à Santa Maria Siché
 - Logements communaux à Cristinacce
 - Logements sociaux à Corte

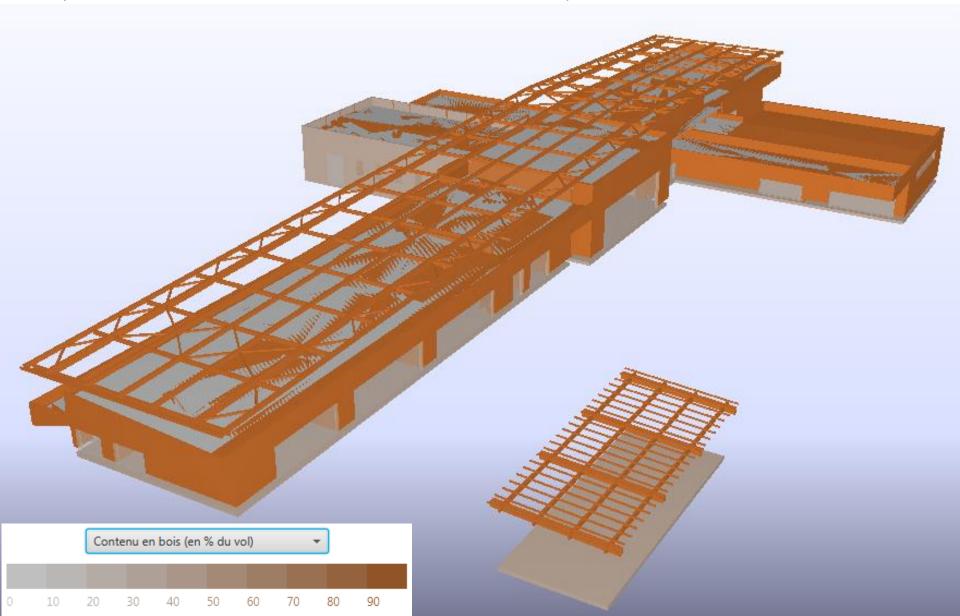
Etudes réalisées avec le logiciel COCON-BIM


www.cocon-bim.com

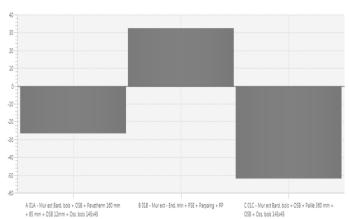
Code	Nom			
A	Variante de base telle que construite avec des matériaux biosourcés du continent. Isolation à base de matériaux			
	manufacturés (laine et fibre de bois notamment).			
В	Variante avec solutions constructives conventionnelles.			
С	Variante avec matériaux biosourcés de Corse et utilisation de paille et de ouate de cellulose en isolation			

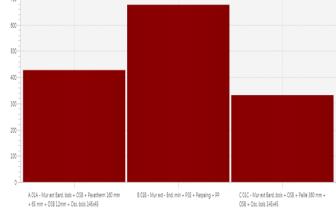
Contenu en bois - Variante A (projet)

(en % du volume des éléments constructifs)


Contenu en bois - Variante B (conventionnelle)

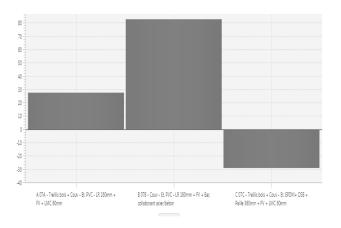
(en % du volume des éléments constructifs)

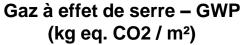

Contenu en bois - Variante C (locale)

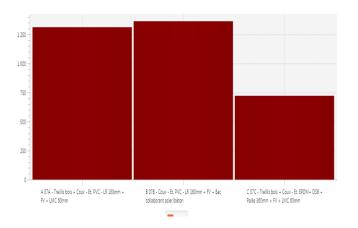

(en % du volume des éléments constructifs)

Comparaison des murs extérieurs (par m²)

Composition par variante							
Base (A) Conventionnelle (B) Biosourcée Corse (C)							
Bardage bois + lame d'air	Enduit minéral	Bardage bois + lame d'air					
Laine de bois 65 mm	Polystyrène expansé (200 mm)	Fibre de bois 16 mm					
Laine de bois 160 mm	Bloc béton creux 200 mm	Bottes de paille 360 mm					
Panneau bois (type OSB) 12 mm	Plaque de plâtre 13 mm	Montant en bois					
Montant en bois		Panneau bois (type OSB) 12 mm					
Plaque de plâtre Ba18 + lame d'air		-					
	Résistance thermique						
$>6.5 \text{ (m}^2.\text{K/W)}$ $>6.1 \text{ (m}^2.\text{K/W)}$ $>7.5 \text{ (m}^2.\text{K/W)}$							
Emiss	sions de GES par pour l'ensemble du c	ycle de vie					
-26 (kg eq. CO2/m²) +32 (kg eq. CO2/m²) -52 (kg eq. CO2/m²)							
Energie primaire non renouvelable							
425 (MJ/m²)	425 (MJ/m²) 676 (MJ/m²) 332 (MJ/m²)						
TW T							




Gaz à effet de serre – GWP (kg eq. CO2 / m²)

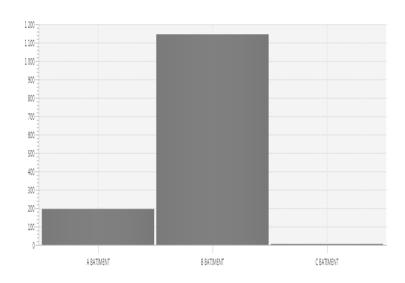

Energie primaire non renouvelable PENRT (MJ / m²)

Comparaison des toitures (par m²)

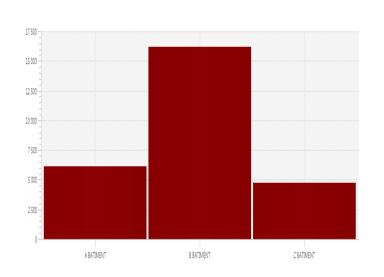
Composition par variante						
Base (A)	Conventionnelle (B)	Biosourcée Corse (C)				
Résille en bois du continent	Résille en bois du continent	Résille en bois Corse				
Membrane d'étanchéité en PVC	Membrane d'étanchéité en PVC	Membrane d'étanchéité				
Laine de roche 230 mm	Laine de roche 230 mm	OSB 12 mm				
Frein vapeur	Frein vapeur	Bottes de paille 360 mm				
Dalle de bois contrecollé 60 mm	Système collaborant acier/béton	Frein vapeur				
		Dalle de bois Corse contrecollé 60 mm				
	Résistance thermique					
> 6 (m².K/W)	> 6 (m².K/W)	> 7,6 (m².K/W)				
Emiss	ions de GES par pour l'ensemble du cy	cle de vie				
+27 (kg eq. CO2/m²)	+83 (kg eq. CO2/m²)	-29 (kg eq. CO2/m²)				
Energie primaire non renouvelable						
1312 (MJ/m²)	1362 (MJ/m²)	724 (MJ/m²)				

Energie primaire non renouvelable PENRT (MJ / m²)

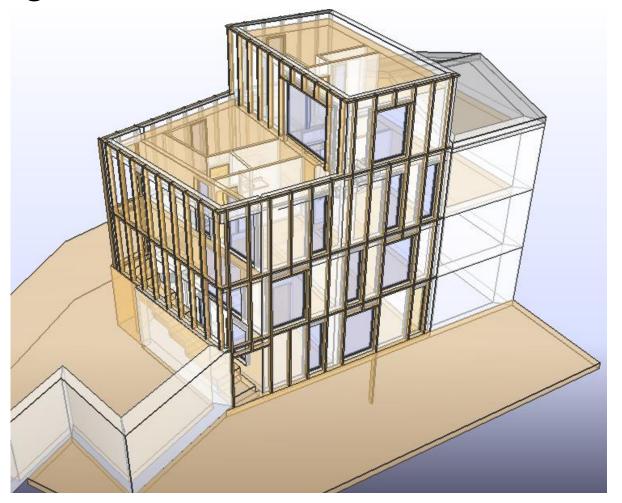
Bâtiment : nature des matériaux employés


Total: 1467615 kg

Total: 1028340 kg

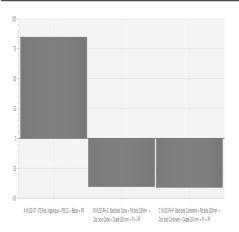

Total: 1196362 kg

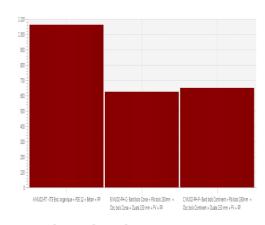
Eligibilité des variantes de l'opération aux différents niveaux d'exigence du label « bâtiment biosourcé »



Gaz à effet de serre – GWP (kg eq. CO2 / m²)

Energie primaire non renouvelable PENRT (MJ / m²)

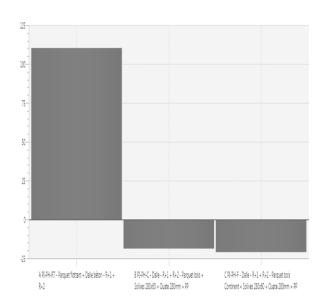

Logements communaux à Cristinacce

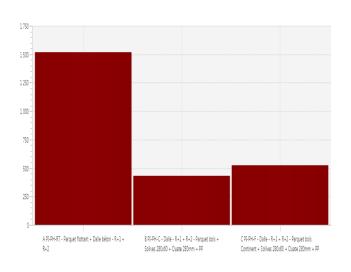


Code	Nom
A	Variante de base – niveau thermique RT 2012 et solutions constructives conventionnelles.
В	Variante bâtiment passif avec matériaux biosourcés de Corse
С	Variante bâtiment passif avec matériaux biosourcés du continent

Comparaison des murs extérieurs (par m²)

Composition par variante						
Conventionnelle (A) Biosourcée Corse (B) Biosourcée Continent (C)						
Enduit organique	Bardage bois + lame d'air	Bardage bois + lame d'air				
Polystyrène expansé (120 mm)	Fibre de bois 160mm	Fibre de bois 160mm				
Mur béton (190mm)	Ossature bois 160x60mm	Ossature bois 160x60mm				
Plaque de plâtre 13 mm	Ouate de cellulose 150mm	Ouate de cellulose 150mm				
	Plaque de plâtre	Plaque de plâtre				
	Résistance thermique	•				
> 3,5 (m ² .K/W)	> 6,4 (m².K/W)	> 6,4 (m².K/W)				
	Poids					
475 kg 68 kg 68 kg						
Emiss	sions de GES par pour l'ensemble du c	ycle de vie				
716 (kg eq. CO2/m²)	-345 (kg eq. CO2/m²)	-349 (kg eq. CO2/m²)				
·						
Energie primaire non renouvelable						
9 012 (MJ/m²)	427 (MJ/m²)	427 (MJ/m²)				

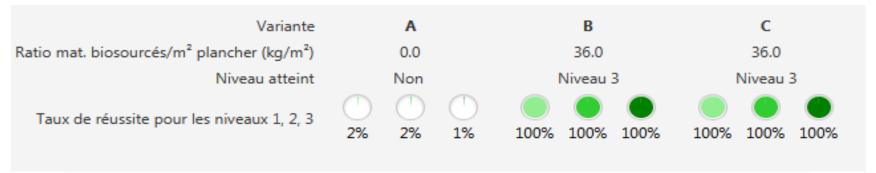


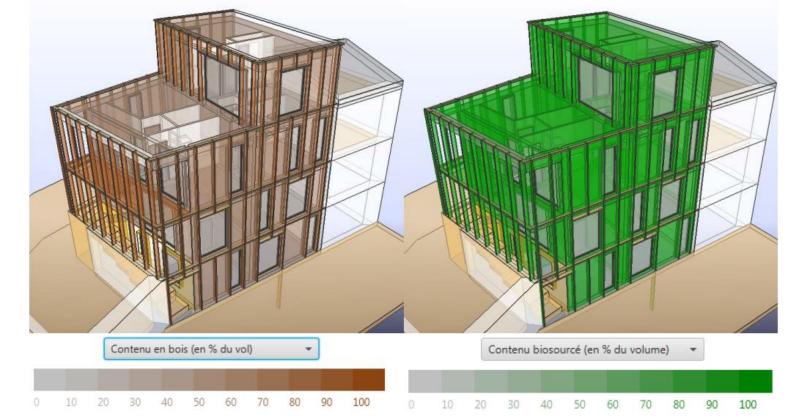

Gaz à effet de serre – GWP (kg eq. CO2 / m²)

Energie primaire non renouvelable PENRT (MJ / m²)

Comparaison des dalles intermédiaires (par m²)

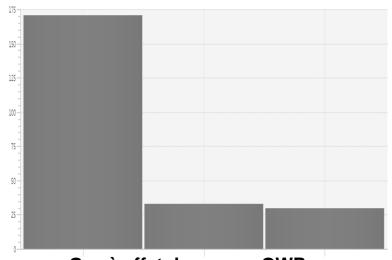
	Composition par variante	
Conventionnelle (A)	Biosourcée Corse (B)	Biosourcée Continent (C)
Plancher bois	Plancher bois Corse	Plancher bois
Chape 40 mm	Fib bois acoustique	Fib bois acoustique
Dalle béton 200mm	Chape 40mm	Chape 40mm
	OSB	OSB
	Ouate de cellulose	Ouate de cellulose
	Solives Corse	Solives
	Poids	
602 kg	149 kg	149 kg
Emissi	ons de GES par pour l'ensemble du cy	cle de vie
110 (kg eq. CO2/m²)	-18 (kg eq. CO2/m²)	-21 (kg eq. CO2/m²)
	Energie primaire non renouvelable	
1 519 (MJ/m²)	432 (MJ/m²)	525 (MJ/m²)



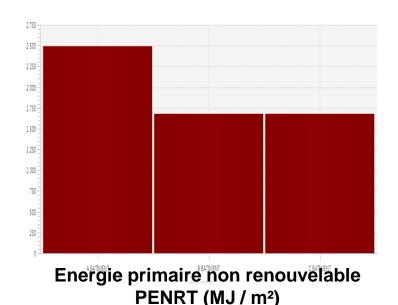


Bâtiment : nature des matériaux employés

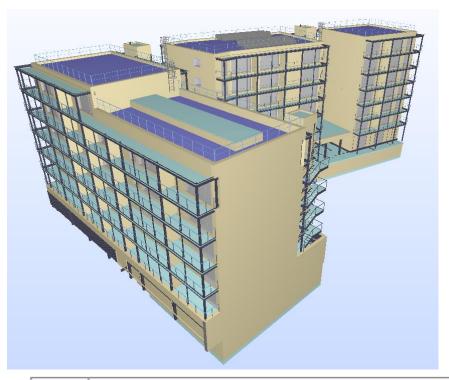
Eligibilité des variantes de l'opération aux différents niveaux d'exigence du label « bâtiment biosourcé »

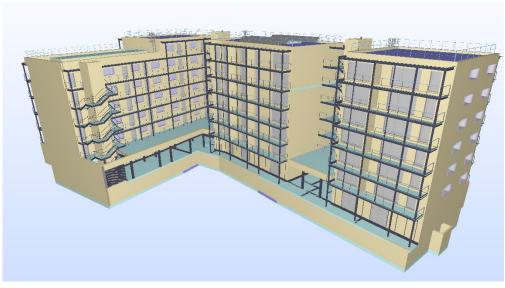


Bâtiment (bilan produits de construction / m² SDP)


Rappel seuils (E+C-)

Carbone 1: 800 kg eq. CO2 / m² SDP Carbone 2: 750 kg eq. CO2 / m² SDP


Produits	Produits de construction - Bilan par variante et par m² de SDP					
Conventionnelle (A) Biosourcée Corse (B) Biosourcée Continent (
Emis	Emissions de GES par pour l'ensemble du cycle de vie					
170 (kg eq. CO2/m² sdp)	32 (kg eq. CO2/m² sdp)	29 (kg eq. CO2/m² sdp)				
Energie primaire non renouvelable						
2489 (MJ/m² sdp) 1675 (MJ/m² sdp) 1689 (MJ						



Gaz à effet de serre – GWP camen (kg eq. CO2 / m²)

ACV d'un projet de logements collectifs à Corte

Code	Nom
A	Variante de base telle que construite avec des matériaux biosourcés du continent. Isolation à base de matériaux manufacturés (laine minérale et polystyrène notamment).
В	Variante avec solutions constructives conventionnelles.
С	Variante avec matériaux biosourcés de Corse et utilisation de paille et de ouate de cellulose en isolation.
D	Idem variante C mais en considérant que la chaine de production de matériaux biosourcés est optimisée d'un point de vue environnemental.

Solutions constructives (variantes A, B, C, D)

	A	В	C	D
Fondations			Béton	
Poteaux	Béton en N-1 N et N+1.	Béton	Béton en N-1 N et N+1.	Béton en N-1 N et N+1.
	Bois à partir de N+2		Bois Corse à partir de N+2	Bois Corse optim à partir de N+2
Dalles	Béton N-1 N et N+1	Béton	Béton N-1 N et N+1	Béton N-1 N et N+1
	Bois à partir de N+2		Bois à partir de N+2	Bois Corse optim à partir de N+2
Enveloppe	Struct. / oss. bois	Béton	Struct. / oss. bois	Struct. / oss. bois Corse optim
	Laine minérale	Laine minérale	Paille	Paille
	Plaque de plâtre int.	Plaque de plâtre	Plaque de plâtre int.	Plaque de plâtre int.
	Fermacell côté extérieur		Fermacell côté extérieur	Fermacell côté extérieur
Bardage	Bois non traité	Acier	Bois traité ignifug.	Bois Corse optim. traité ignifug.
Refends	Béton ou bois	Béton	Béton ou bois Corse	Béton ou bois Corse optim.
Cloisons	Plaque de p	lâtre	Plaque de plâtre	
	Laine miné	rale	Ouate de cellulose	

Particularités de la variante B (conventionnelle):

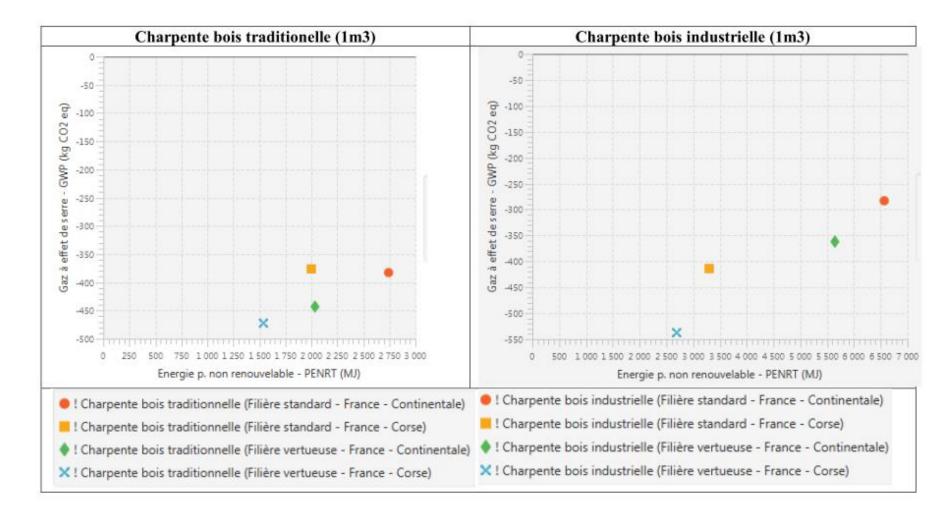
Après concertation avec le bureau d'étude structure bois, la variante conventionnelle a été modélisé en considérant que :

- l'ensemble des dalles sont constituées de béton de 200 mm
- les poteaux sont en béton et ont des sections identiques à ceux (en bois) de la variante A malgré l'augmentation du poids de l'édifice lié à l'emploi privilégié du béton dans les dalles et les murs.

Particularités des variantes C et D (biosourcées) :

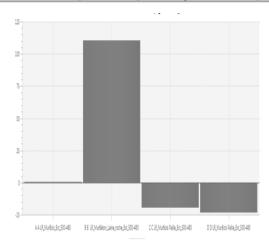
Isolation des façades

Compte tenu de la nature du bâtiment (immeuble de logements collectifs) et du nombre de niveaux qu'il compte, des règles spécifiques s'appliquent dans le domaine des façades et de leur comportement vis-à-vis des incendies.

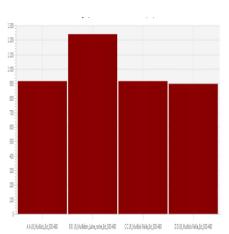

Le bois de bardage doit être traité pour ignifugation

L'isolant biosourcé doit être protégé du feu coté bardage par un parement classé a minima A2-s3,d0. Ceci peut notamment être obtenu avec des produits de type : BA18 hydrofuge ou fermacell.

Particularités de la variante D (Corse optimisée):


Les impacts environnementaux de la filière bois peuvent être réduits selon 3 axes principaux (installations de sciage et séchage sobres, choix des colles, et cogénération). Ceci a été modélisé par le bureau d'étude C4CI et se traduit par une réduction de l'énergie grise d'environ 35% sur les avivés, 20-25% sur les produits peu transformés (lambris, bardages, charpente...), et de moins de 10% sur les produits plus transformés (escaliers, fenêtres...).

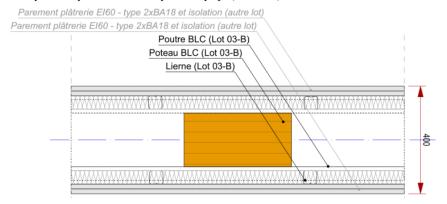
Bois de charpente : filière standard et optimisée

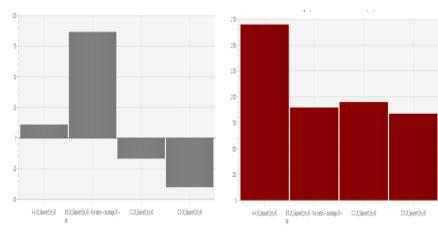


Comparaison des murs extérieurs (par m²)

Composition par variante					
A B C D					
P. de plâtre	P. de plâtre	P. de plâtre	P. de plâtre		
Laine de roche 45mm	L. de roche 45mm	Ouate cellulose 45mm	Ouate cellulose 45mm		
Oss. Métal	Oss. Métal	Oss. Métal	Oss. Métal		
L. de verre 200mm	Béton 200mm	Bottes de paille 360mm	Bottes de paille 360mm		
Struct. Bois 60x200mm	L. de roche 200mm	Struct. Bois Corse 50x360mm	Struct. Bois Corse optim 50x360mm		
L. de roche 65mm		Fermacell	Fermacell		
Fermacell					
Bardage bois	Bardage acier	Bardage bois ignifugé	Bardage bois ignifugé		
		Poids / m ²			
73 kg / m ²	513 kg / m ²	108	kg / m²		
Epaisseur (mm)					
450 mm	450 mm	n 530 mm			
Résistance thermique					
> 8.5 (m ² .K/W) > 7.5 (m ² .K/W) > 8.5 (m ² .K/W)					

Gaz à effet de serre – GWP (kg eq. CO2 / m²)

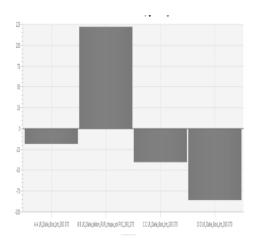



Energie primaire non renouvelable PENRT (MJ / m²)

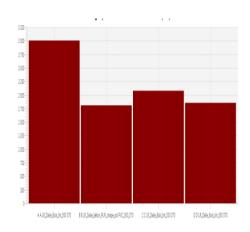
Comparaison des parois séparatives (par m²)

Composition par variante						
A B C D						
P. de plâtre 4x18mm	P. de plâtre 2x18mm	P. de plâtre 4x18mm	P. de plâtre 4x18mm			
Laine de roche 2x45 mm	L. de roche 2x45mm	Ouate cellulose 2x45 mm	Ouate cellulose 2x45mm			
Oss. Métal	Oss. Métal	Oss. Métal	Oss. Métal			
Struct. BLC 480x240mm	Béton 200mm	Struct. BLC Corse 480x240mm	Struct. BLC Corse optim 480x240mm			
		Poids / m ²				
132 kg / m ²	510 kg / m ²	133	2 kg / m ²			
		Epaisseur (mm)				
400 mm	400 mm 326 mm 400 mm					
Résistance thermique						
> 2.5 (m ² .K/W)						

Figure 4: Exemple de composition d'un mur séparatif du projet (variante A)

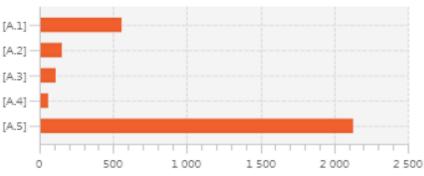


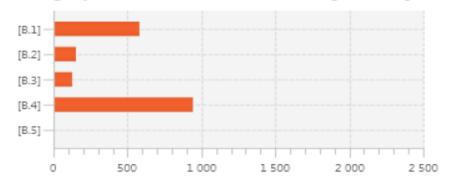
Gaz à effet de serre – GWP (kg eq. CO2 / m²)


Energie primaire non renouvelable PENRT (MJ / m²)

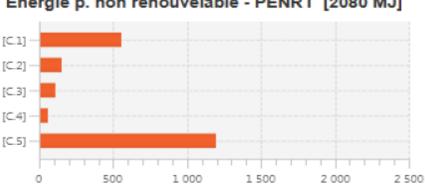
Comparaison des dalles intermédiaires (par m²)

Composition par variante						
A B C D						
Sol souple Linoleum	Sol souple PVC	Sol souple Linoleum	Sol souple Linoleum			
Chape fluide béton 50mm	Chape fluide béton 50mm	Chape fluide béton 50mm	Chape fluide béton 50mm			
Fib. de bois acoustique 40mm Laine roche acoustique 40mm		Fib. de bois acoustique 40mm	Fib. de bois acoustique 40mm			
Sable 70mm		Sable 70mm	Sable 70mm			
Dalle LMC 220mm	Dalle béton 200mm	Dalle LMC Corse 220mm	Dalle LMC Corse optim 220mm			
Poids / m ²						
$378 \text{ kg} / \text{m}^2$ $618 \text{ kg} / \text{m}^2$ $378 \text{ kg} / \text{m}^2$ $378 \text{ kg} / \text{m}^2$						


Gaz à effet de serre – GWP (kg eq. CO2 / m²)


Energie primaire non renouvelable PENRT (MJ / m²)

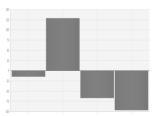
Contenu en énergie primaire non renouvelable des matériaux des dalles intermédiaires

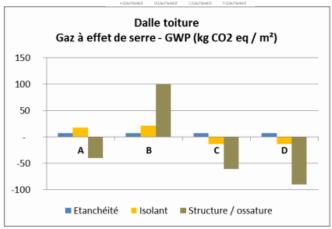


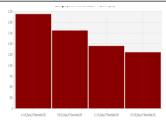
Variantes: B - 1 m2
B LR_Dalle_béton_PUR_chape_sol PVC_350_370
Energie p. non renouvelable - PENRT [1809 MJ]

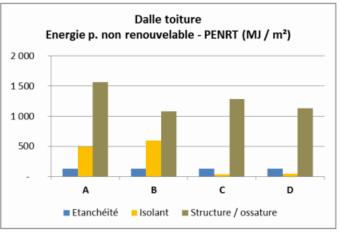
- 1. Linoléum 2. Chape ciment 3. Fib bois 4. Sable 5. Dalle bois
- 1. Sol PVC 2. Chape ciment 3. Laine de roche 4. Dalle béton

Variantes: C - 1 m2
C LR_Dalle_Bois_Int_350 370
Energie p. non renouvelable - PENRT [2080 MJ]

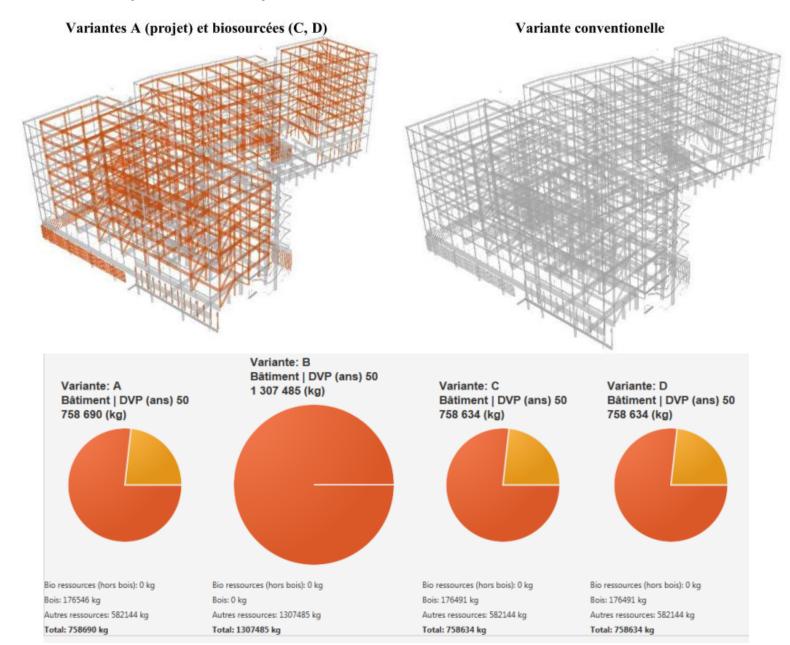

Variantes: D - 1 m2
D LR_Dalle_Bois_Int_350 370
Energie p. non renouvelable - PENRT [1857 MJ]




- 1. Linoléum 2. Chape ciment 3. Fib bois 4. Sable 5. Dalle bois
- 1. Linoléum 2. Chape ciment 3. Fib bois 4. Sable 5. Dalle bois


Comparaison des dalles de toiture (par m²)

Composition par variante							
A	В	C	D				
Etanchéité auto-protégée	Etanchéité auto-protégée	Etanchéité auto-protégée	Etanchéité auto-protégée				
Laine de roche 220mm	Laine de roche 240mm	OSB 2 x 22 mm	OSB 2 x 22 mm				
OSB 22mm		Paille 360mm Paille 360mm					
		Poutre en I en Bois et Fib. bois	Poutre en I en Bois et Fib. bois				
Dalle LMC 145mm	Dalle béton 200mm	Dalle LMC Corse 145mm	Dalle LMC Corse optim 145mm				
Poids / m ²							
130 kg / m ²	535 kg / m ²	176 kg / m ²					
Epaisseur (mm)							
387 mm	450 mm	549 mm					
Résistance thermique							
> 6.1 (m ² .K/W)		> 8.1 (m².K/W)					



Poteaux et poutres : poids béton / bois à l'échelle du bâtiment

Comparaison des poteaux et des poutres

Figure 15: Poteaux et poutres de l'ensemble du bâtiment, émissions de gaz à effet de serre pour l'ensemble du cycle de vie

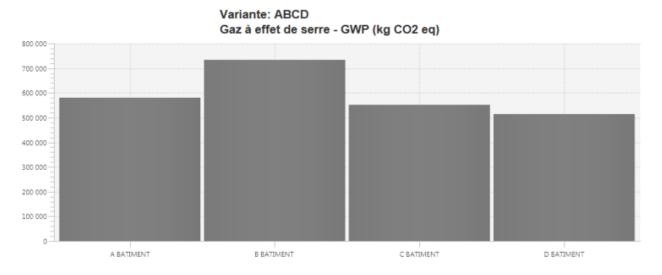
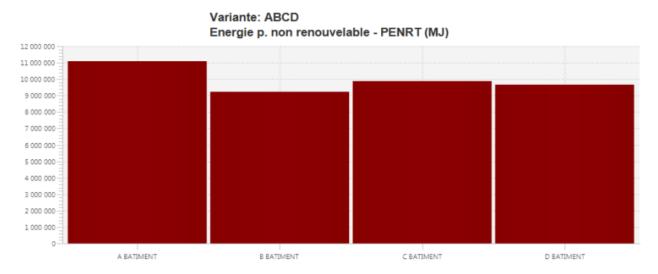
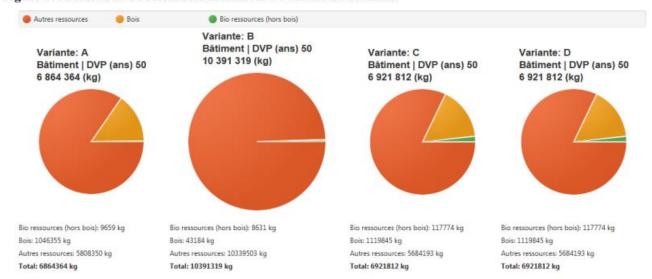



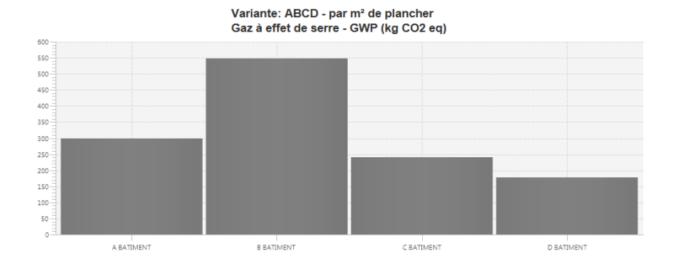
Figure 16: Poteaux et poutres de l'ensemble du bâtiment - consommation d'énergie primaire non renouvelable (MJ/m²) pour l'ensemble du cycle de vie

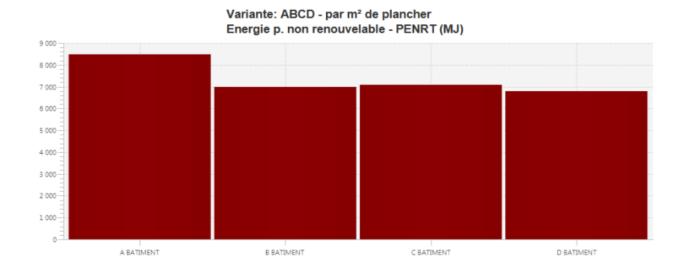
Bilan bâti / matériaux de construction


Tableau 10: Emissions de gaz à effet de serre liées à l'ensemble du cycle de vie (hors usage durant 50 ans) du bâtiment

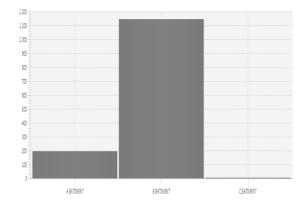
	Gaz à effet de serre - GWP (kg CO2 eq)				
Variante	Α	В	С	D	
TOTAL	1 489 016	2 734 690	1 203 418	884 605	
au m² de plancher	298	548	241	177	
Ratio A/BCD		184%	81%	59%	

Tableau 11: Energie primaire non renouvelable mobilisée par le cycle de vie (hors usage durant 50 ans) du bâtiment


	Energie p. non renouvelable - PENRT (MJ)				
Variante	Α	В	С	D	
TOTAL	42 282 040	34 921 452	35 418 180	33 807 328	
au m² de plancher	8 473	6 998	7 098	6 775	
Ratio A/BCD		83%	84%	80%	


Figure 17: Poids total de ressources mobilisées à l'échelle du bâtiment

Bilan bâti / matériaux de construction


Figure 18: Emissions de gaz à effet de serre à l'échelle du bâtiment

Comparaison émissions GES par projet

Groupe scolaire de Santa Maria Siché

Logements communaux de Cristinacce

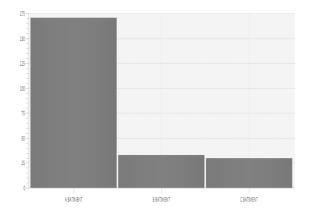
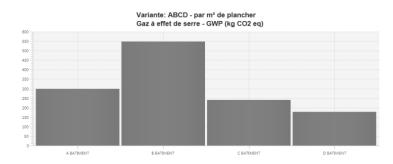
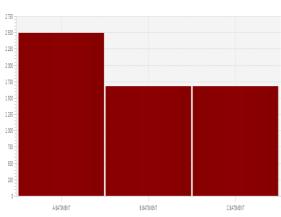
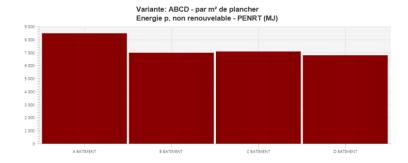



Figure 18: Emissions de gaz à effet de serre à l'échelle du bâtiment


Logements sociaux de Corte


Comparaison énergie primaire n.r. par projet

Groupe scolaire de Santa Maria Siché

Logements communaux de Cristinacce

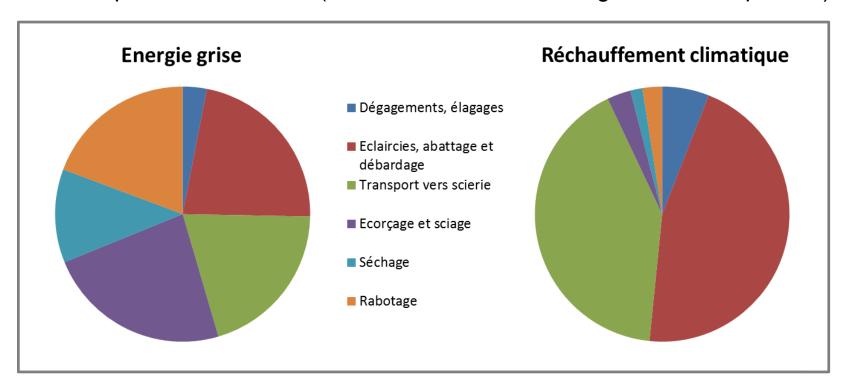
Logements sociaux de Corte

Objectif

« Quantifier précisément les gains en énergie grise et en émissions de GES obtenus par le recours massif aux matériaux biosourcés et par leur provenance locale par rapport à des solutions constructives conventionnelles, que ce soit pour la construction ou pour l'exploitation de bâtiments ayant des performances énergétiques comparables »

Phases

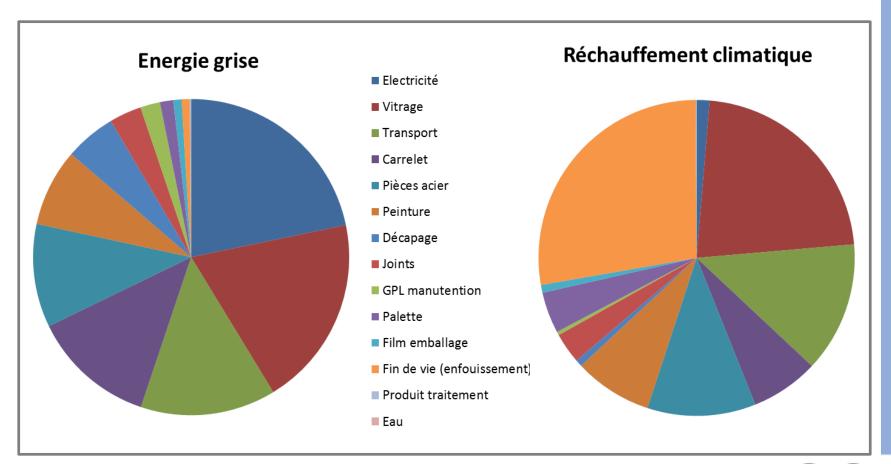
- Phase 1 Analyse de Cycle de Vie de la filière forêt-bois de Corse
- Phase 2 Analyse de bâtiments biosourcés existants ou en projet
- Phase 3 Élaboration d'un référentiel


Financement

Réalisation

Ordres de grandeur sur les sciages

- Pour fabriquer 1 m³ d'avivé de résineux
 - Réchauffement climatique ≈ (- 880) + 50 en kg equiv. CO₂ (≈ 15 L de carburant)
 - Energie grise (en MJ) ≈ 1750 MJ (≈ 40 L de carburant)
- Principaux contributeurs (varient selon les technologies, les transports...)


Variabilités et pistes d'améliorations

- Consommations de carburants en forêt
 - Paramètres : sylviculture, topographie, méthode de débardage (ballon ...)
- Consommations de carburant transport vers scierie
 - Paramètres : distance
 - Exemple: passer de 100 km à 50 km -> -20% CO₂ et -10% énergie grise
- Consommation d'électricité de la scierie
 - Paramètres : section des produits, essence, technologie équipements...
 - Valeurs courantes: 50 à 150 kWh/m³
 - Exemple: passer de 100 kWh à 50 kWh -> -5% CO₂ et -30% énergie grise
- Mix électrique de la scierie
 - Paramètres : réseau, producteurs énergie verte, production sur site (PV, cogen)
 - Exemple : cogénération -> -10% CO₂ et -40% énergie grise
- TOTAL : potentiel -30% sur CO₂ et -60% sur énergie grise

Principaux contributeurs, exemple de la fenêtre :

- Carrelet ne représente que 8% à 12% des impacts
- Opérations et matériaux additionnels

Pistes d'améliorations produits transformés (charpente, menuiserie...)

- Type d'électricité utilisée (22% impacts fenêtre)
- Consommation électrique des machines utilisées (rendement)
- Distances d'approvisionnement et de livraison (15% impacts fenêtre)
- Choix des colles (3% de la masse, 10% à 15% des impacts du carrelet ou du lamellé-collé)
- Durabilité des finitions (10% impacts fenêtre, fréquence d'entretien)
- Conception des produits (quantités de matière, acier recyclé…)

Propositions

- Faire évoluer le moteur du calcul thermique réglementaire afin d'y modéliser la réalité des phénomènes thermiques :
 - Inertie et déphasage
 - Chaleur latente
- Investir les groupes de travail réglementaires et normatifs avec une vision stratégique à moyen terme pour les matériaux biosourcés
- Investiguer sur les données d'ACV et les croiser entre filières afin d'en corriger les biais

PREAU D'ECOLE – PESMES (DOUBS) – Architectes : Olivier VICHARD & Bernard QUIROT

MERCI DE VOTRE ATTENTION