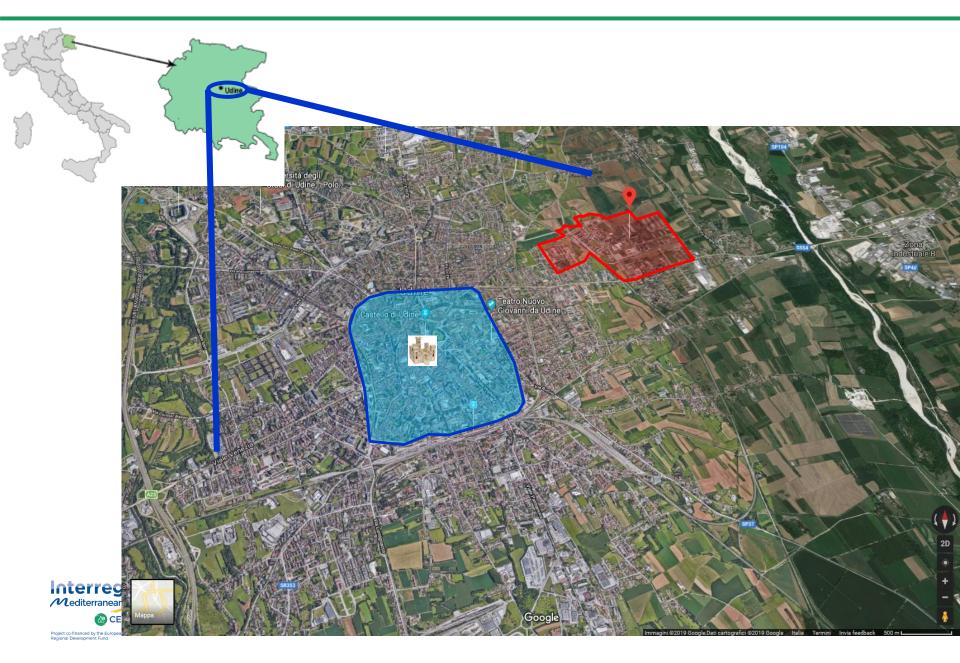


Partner di progetto

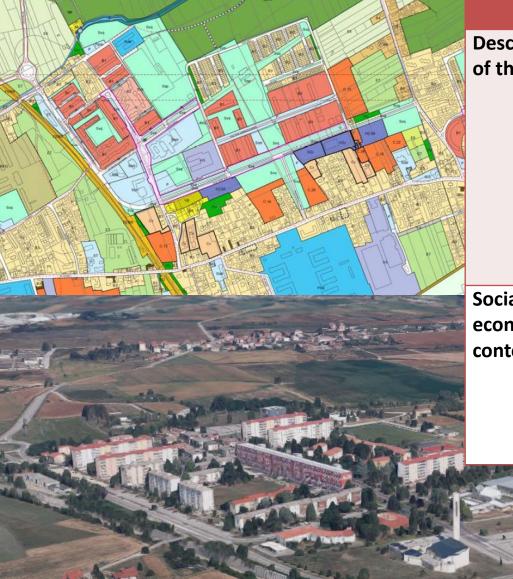


Project co-financed by the European **Regional Development Fund**

Social housing area refurbishment in Udine, Italy

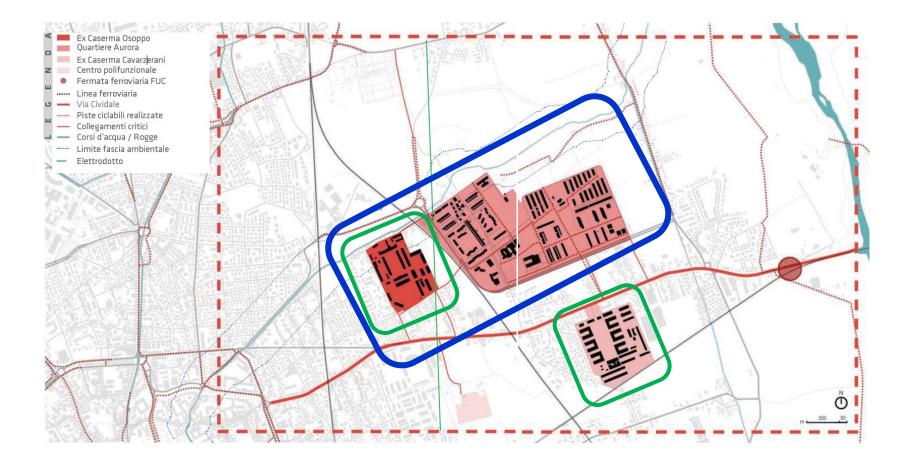
Francesca Visintin

28th March 2019 – Marseille

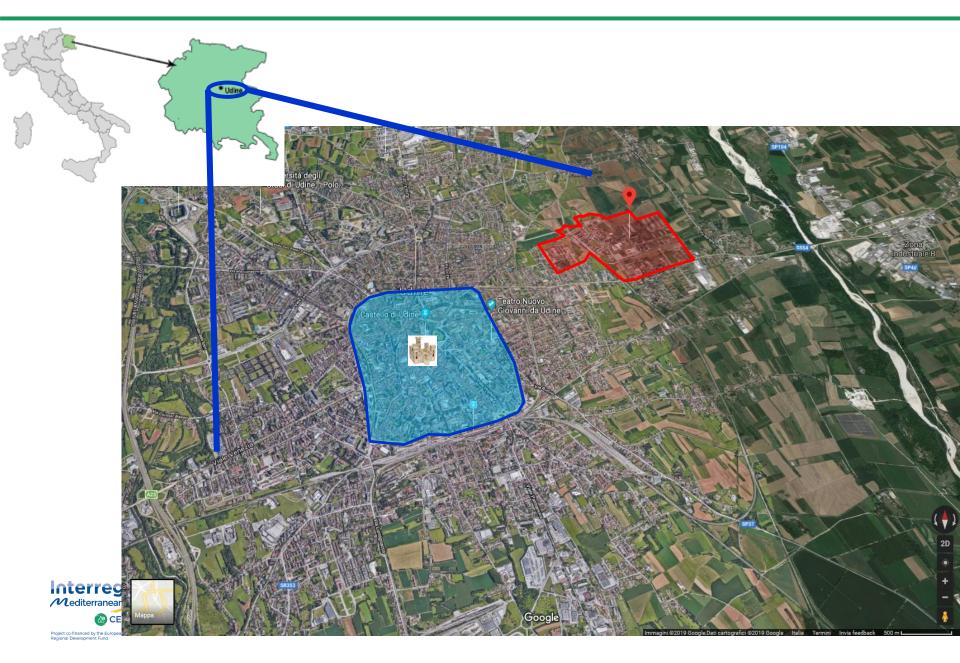


cription	North-east corner of Udine
he area	The area borders with poorly
	urbanized areas
	Characterized by park and
	agricultural destination
	Relatively new urbanization, which
	started at the end of Fifties and
	reached the maximum expansion in
	the Eighties

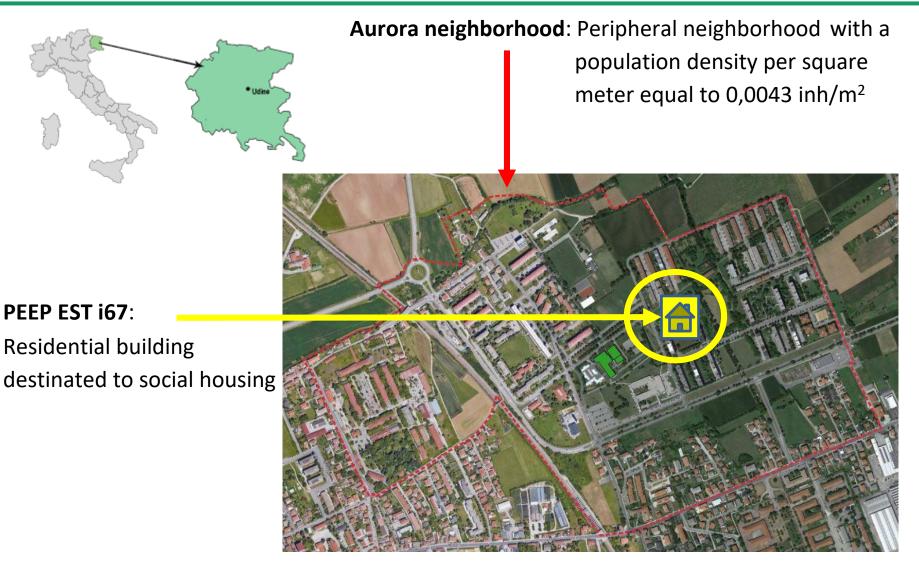
Social and economic context Social housing Area with predominantly popular economic construction Neighborhood with a purely workingclass and low-income population Socially marginalized neighborhood


The North-East corner of Udine can be assumed as a manifesto

- crossroads of people and details of a minor history
- characterized by precious architectural evidence that can be transformed into an experimental laboratory for new ways of living and sustainability


Not only. The North-East corner of Udine is a border area:

- where, until 1900 border between city and countryside (rurality witnessed by the presence of farmhouses)
- from the Fifties until the end of the Cold War, it was the eastern border of the Iron Curtain: 3 large barracks were established, 2 of them in and around the Aurora neighborhood



Experimental City	When: 2015					
Project financed in	n Who: Municipality of Udine					
the frame of the	What: Objectives					
urban safety,	 Improving and qualifying urban decorum 					
security and urban	 Increasing territorial security and urban resilience 					
regeneration	- Regenerating the former Osoppo barrack with the aim to provide					
Program	services and public spaces for the Eastern side of Udine - Improving slow and public mobility - Reducing global emissions, energy natural resources consumption, including land consumption - Improving the quality of life - Guaranteeing equal opportunities					
	 Budget: 30 million euro Public funding: 18 million euro Private funding: 12 million euro 					

Aurora neighborhood | PEEP EST i67 building

PEEP EST i67 building

PEEP EST i67 | Via Afro 1 | Udine | Italy

Building type and ownership

General information on the selected building				
PEEP EST i67				
Address	Via Afro 1 33100 UDINE Italy			
Building use	Residential building social housing			
Owner	Municipality of Udine			
Year of construction	1981-1984			
Number of levels above earth	7			
Number of levels underground	1			
Number of occupants	155			
Net useful surface of building	4.913 m ²			

Technical aspects

General information on the selected building

PEEP EST i67

Building type Building in line with load-bearing wall in reinforced concrete and

concrete-slab floors

Heating system Autonomous gas generator system

Cooling system Absent

DHW system Autonomous system with gas heating generator in each unit

Ventilation system Natural ventilation

Lighting system Incandescent and energy-saving lamps

• Scenario

- Scenario 0: State of the art
- Scenario 1: Retrofitting

• Comparing scenario by applying

- CESBA MED Generic Framework building
- CESBA MED Tools building

• Scenario

- Scenario 0: State of the art
- Scenario 1: Retrofitting
- Comparing scenario by applying
 - CESBA MED Generic Framework building
 - CESBA MED Tools building

Scenario 0 || State of Art

Scenario 0 || State of Art

Actual performance analysis

STRENGHT

ASPECTS

Some interventions have been carried out in the Eighties:

• Thermal insulation on the blind facades (east and west), on the attic of the first floor (garage) and on the roof

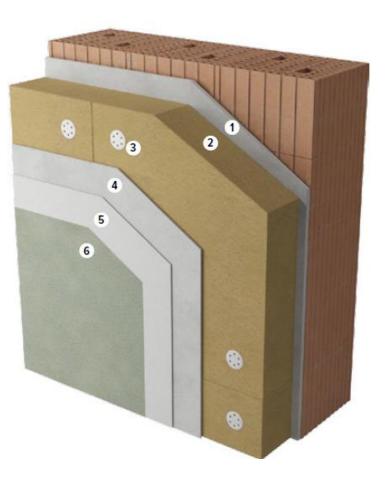
Thermal insulation on the attic of the first floor

Thermal insulation on west facade

Actual performance	analysis
WEAKNESS	The building is
ASPECTS	 Owned by the Municipality of Udine Managed by ATER (Azienda Territoriale per l'Edilizia Residenziale, Regional Agency for Social Housing) Used by third parties and ATER does not have administrative and financial autonomy the project has to be approved by the Region
	 and The building is entirely inhabited and the interventions from the inside are not easy to carry out The conversion from autonomous to centralized systems is not feasible due to the lack of adequate space for the central heating plant and related system

CONSTRAINTS /	RESTRICTIONS
LEGAL	 The General Urban Development Plan, and
CONSTRAINTS	 The Building Regulations
	 Landscape legal constraints due to the presence of water
	channels (Communication of the 19/08/2016 of the
	Archaeological, fine Arts and Landscape Supervision Office of
	Friuli Venezia Giulia)

Actual performance	analysis
POTENTIAL FOR PERFORMANCE IMPROVEMENT	 The scenario analysis identifies as improvements: Thermal insulation (thermal coat) of southern and northern vertical walls Replacement of external windows Replacement of the former thermal roof and first floor attic insulation Installation of photovoltaic system on the roof that could however only cover shared electrical services (stairs lighting)



Existing windows: aluminium frame and single glass

Hypothesis of intervention | first

Thermal insulation of fac	ades – m² 3.016
1. NaturaKALK POR	Adhesive
	Thermal insulation
2. NaturWALL	material of wood fibre
	Thickness: 0,14 m
	Density: 145 kg/m ³
3. Anchors	
4. Glass fibre mesh	
5. NaturaKALK FILLER	Finishing layer
6. NaturaKALK SILICATI	Plaster/base coat
7. NaturaKALK	Finishing layer

Hypothesis of intervention | second

External doors and windows - m² 520

Thermal break casement series with blind leaf CE marked

Thermal insulation system with tubular bars

Glass Systems: LOW EMISSION and SOLAR CONTROL GLASS in accordance with current norms and fitted with ARGON GAS and WARM EDGE CONDUIT as a standard

4 be + 14 GA WE + 4T + 12 GA WE + 33.1 be

Scenario 1 || Retrofitting

Financial results	Subjects involved	
Total investment	Public Private Partnership	790.000€
Annual cost saving	Tenants	22.840 €/year
Building regeneration	Municipality of Udine	

- Scenario
 - Scenario 0: State of the art
 - Scenario 1: Retrofitting
- Comparing scenario by applying
 - CESBA MED Generic Framework building
 - CESBA MED Tools building

B – Energy and Resources Consumption

B1 – In use energy consumptions				S1
B1.1 – Primary energy demand (in use stage)	Annual primary energy demand per useful internal floor area	kWh/m²/y	160,66	97,13
B1.2 – Delivered thermal energy demand (in use stage)	Annual delivered thermal energy demand per useful internal floor area	kWh/m²/y	108,48	48,07
B1.3 - Delivered electric energy demand	Annual delivered electric demand per useful internal floor area	kWh/m²/y	19,26	19,26
B1.4 – Energy from renewable sources in total primary energy consumption	Primary energy demand of the building that is met by renewable sources on total primary energy demand	%	0	0
B1.5 – Energy from renewable sources in total final thermal energy consumption	Share of renewable energy in final thermal energy consumptions	%	0	0
B1.6 – Energy from renewable sources in total electric energy consumption	Energy from renewable sources in total electric energy consumption	%	0	0
/ Cesba MED				

Project co-financed by the European Regional Development Fund

B – Energy and Resources Consumption

B3 – Use of materials		S0	S1			
B3.5 – Recycled materials	Weight of recycled materials on total weight of materials	%	0	0		
B4 – Use of water, stormwater and greywater						
B4.2 – Water consumption for indoor uses (in use stage)	Water consumption per occupant per year	m³/occ/yr	52,23	52,23		

C – Environmental Loadings

C1 – Greenhouse Gas Emissions				S1	
C1.3 – Global Warming potential	CO ₂ equivalent emissions per internal floor area per year	kg CO² eq/m²/yr	31,65	18,96	
C3 – Solid and liquid wastes					
C3.1 – Construction and demolition waste	Weight of waste and materials generated per 1 m ² of useful floor area demolished or constructed	kg/m²/life cycle stage	0	2,92	
C3.2 – Solid waste from building operation	Ratio of the number of collectable solid waste categories within a 100 m distance from the building's entrance to the reference solid waste categories	%	0	0	

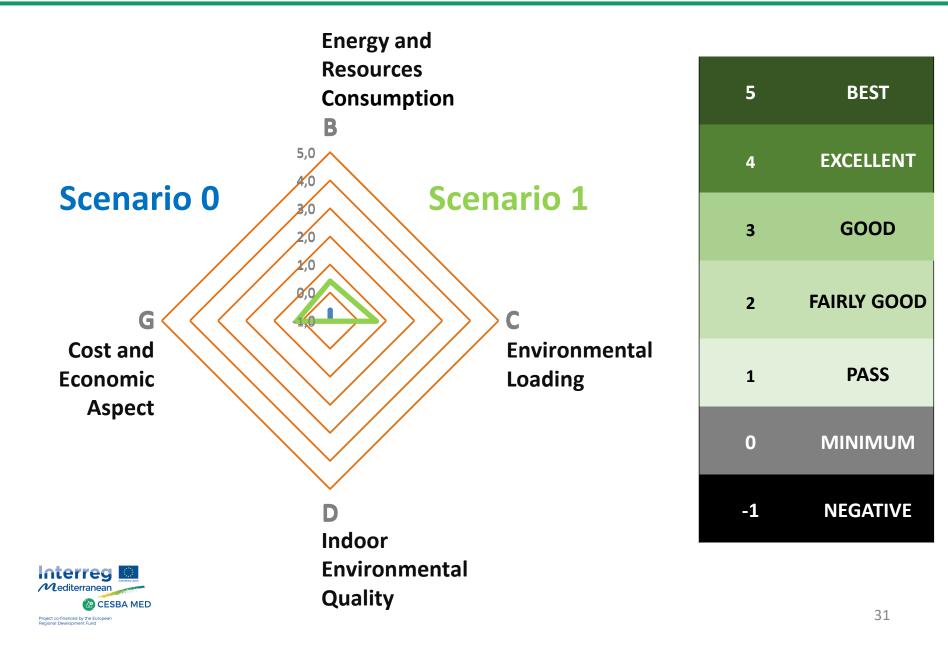
D – Indoor Environmental Quality

D1 – Indoor air quality and ventilation				SO	S1	
D1.4 - TVOC concentration in indoor air TVOC concentration in indoor air $\mu g/m^3$					NA	NA
D1.10 – Ventilation rate	Ventilation rate normalized per useful floor area			NA	NA	
D2 – Air temperature and relative humidity						
D2.2 - Thermal comfort index	Predicted (PPD)	Percentage	Dissatisfied	%	ND	ND

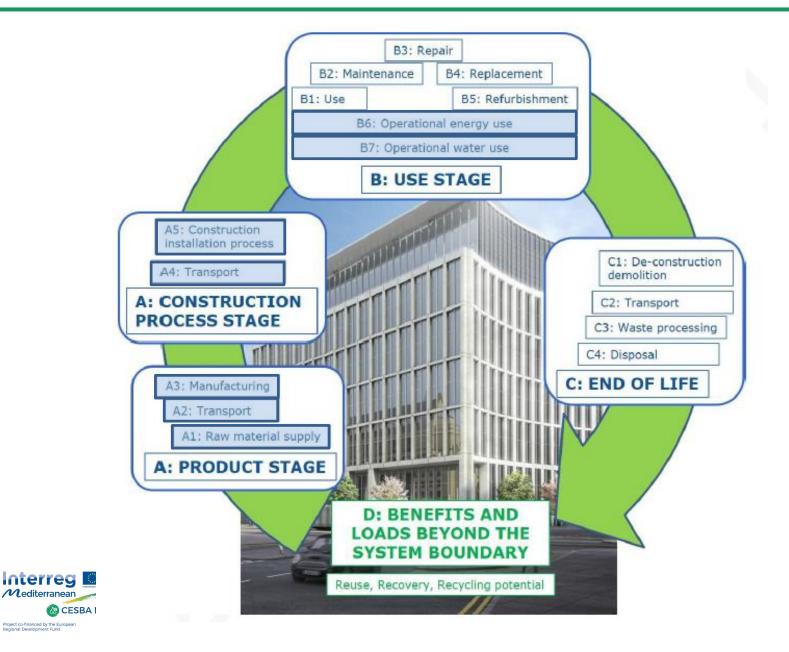
NA = Not Applicable ND = Not Detected

G – Cost and Economics Aspects

G2 – Cost and economic aspect		SO	S1	
G1.4 - Use stage energy cost	Energy annual cost per usable floor area	€/m²/y	12,55	8,20
G1.5 - Use stage water cost	Water annual cost per usable floor area	€/m²/y	2,17	2,17


Comparison | Scenario 0 | Scenario 1

Performance scores assessed by CESBA MED Tool


Issues	State of the art Scenario 0	Scenario 1
	SO	S1
TOTAL SCORE	-0,8	0,4
B – Energy and Resources Consumption	-0,6	0,4
C – Environmental Loading	-1,0	0,6
D – Indoor Environmental Quality	-1,0	-1,0
G – Cost and Economic Aspect	-1,0	0,2

Comparison | Scenario 0 | Scenario 1

Step forward | Testing Level(s) Protocol

Testing Level(s) | Life Cycle Global Warming Potential

S1	GWP ₁₀₀ kg CO ₂ eq/m ² • year	Assessment		
A – PRODUCT STAGE and CONSTRUCTIONC PROCESS STAGE				
A1 – A5 Raw material supply, transport, manufactory, Transport from the gate to the site of use, Construction/installation project	2,81	16%		
B – USE STAGE				
B6 – Operational energy use	14,80	83%		
B7 – Operational water use	0,21	1%		
TOTAL	17,83	100%		

Life cycle stage: 30 years

S1	€/m² • year	Percentage		
A – PRODUCT STAGE AND CONSTRUCTION PROCESS STAGE				
One off costs	3,85	35%		
B – USE STAGE				
Annual recurrent costs – Energy	5,08	45%		
Annual recurrent costs – Water	2,26	20%		
TOTAL	11,19	100%		

Life cycle stage: 30 years

Reference discount rate: 3%

The calculation method is based on elemental cost estimates, i.e. the cost of land and labour is not included

Thanks for your attention ;-)

